کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601552 1336893 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inverting linear combinations of identity and generalized Catalan matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Inverting linear combinations of identity and generalized Catalan matrices
چکیده انگلیسی

We introduce the notion of the generalized Catalan matrix as a kind of lower triangular Toeplitz matrix whose nonzero elements involve the generalized Catalan numbers. Inverse of the linear combination of the Pascal matrix with the identity matrix is computed in Aggarwala and Lamoureux (2002) [1], . In this paper, continuing this idea, we invert various linear combinations of the generalized Catalan matrix with the identity matrix. A simple and efficient approach to invert the Pascal matrix plus one in terms of the Hadamard product of the Pascal matrix and appropriate lower triangular Toeplitz matrices is considered in Yang and Liu (2006) [14]. We derive representations for inverses of linear combinations of the generalized Catalan matrix and the identity matrix, in terms of the Hadamard product which includes the Generalized Catalan matrix and appropriate lower triangular Toeplitz matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 7, 1 December 2010, Pages 1472-1480