کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601577 1336895 2011 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximization and minimization of the rank and inertia of the Hermitian matrix expression A-BX-(BX)* with applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Maximization and minimization of the rank and inertia of the Hermitian matrix expression A-BX-(BX)* with applications
چکیده انگلیسی

We give in this paper a group of closed-form formulas for the maximal and minimal ranks and inertias of the linear Hermitian matrix function A-BX-(BX)* with respect to a variable matrix X. As applications, we derive the extremal ranks and inertias of the matrices X±X*, where X is a solution to the matrix equation AXB=C, and then give necessary and sufficient conditions for the matrix equation AXB=C to have Hermitian, definite and Re-definite solutions. In addition, we give closed-form formulas for the extremal ranks and inertias of the difference X1-X2, where X1 and X2 are Hermitian solutions of two matrix equations and , and then use the formulas to characterize relations between Hermitian solutions of the two equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 434, Issue 10, 15 May 2011, Pages 2109-2139