کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601603 1336896 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximal exponents of polyhedral cones (II)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Maximal exponents of polyhedral cones (II)
چکیده انگلیسی

Let K be a proper (i.e., closed, pointed, full convex) cone in Rn. An n×n matrix A is said to be K-primitive if there exists a positive integer k such that ; the least such k is referred to as the exponent of A and is denoted by γ(A). For a polyhedral cone K, the maximum value of γ(A), taken over all K-primitive matrices A, is called the exponent of K and is denoted by γ(K). It is proved that the maximum value of γ(K) as K runs through all n-dimensional minimal cones (i.e., cones having n+1 extreme rays) is n2-n+1 if n is odd, and is n2-n if n is even, the maximum value of the exponent being attained by a minimal cone with a balanced relation for its extreme vectors. The K-primitive matrices A such that γ(A) attain the maximum value are identified up to cone-equivalence modulo positive scalar multiplication.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 11, 1 June 2010, Pages 2861-2878