کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601636 | 1336898 | 2010 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Agler, Helton, McCullough, and Rodman proved that a graph is chordal if and only if any positive semidefinite (PSD) symmetric matrix, whose nonzero entries are specified by a given graph, can be decomposed as a sum of PSD matrices corresponding to the maximal cliques. This decomposition is recently exploited to solve positive semidefinite programming efficiently. Their proof is based on a characterization for PSD matrix completion of a chordal-structured matrix due to Grone, Johnson, Sá, and Wolkowicz. This note gives a direct and simpler proof for the result of Agler et al., which leads to an alternative proof of Grone et al.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 4, 1 October 2010, Pages 819-823
Journal: Linear Algebra and its Applications - Volume 433, Issue 4, 1 October 2010, Pages 819-823