کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601654 1336899 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algebraic structure for Faber polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An algebraic structure for Faber polynomials
چکیده انگلیسی

Let Σ be the set of functions, convergent for all |z|>1, with a Laurent series of the form f(z)=z+∑n⩾0anz-n. In this paper, we prove that the set of Faber polynomial sequences over Σ and the set of their normalized kth derivative sequences form groups which are isomorphic to the hitting time subgroup and the Bell(k) subgroup of the Riordan group, respectively. Further, a relationship between such Faber polynomial sequences and Lucas and Sheffer polynomial sequences is derived.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 6, 1 November 2010, Pages 1170-1179