کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601697 1336901 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower bound inequalities for norms of symmetrized tensor powers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Lower bound inequalities for norms of symmetrized tensor powers
چکیده انگلیسی

Let VV be a complex inner product space of positive dimension mm with inner product 〈·,·〉〈·,·〉, and let Tn(V)Tn(V) denote the set of all nn-linear complex-valued functions defined on V×V×⋯×VV×V×⋯×V (nn-copies). By Sn(V)Sn(V) we mean the set of all symmetric members of Tn(V)Tn(V). We extend the inner product, 〈·,·〉〈·,·〉, on VV to Tn(V)Tn(V) in the usual way, and we define multiple tensor products A1⊗A2⊗⋯⊗AnA1⊗A2⊗⋯⊗An and symmetric products A1·A2⋯AnA1·A2⋯An, where q1,q2,…,qnq1,q2,…,qn are positive integers and Ai∈Tqi(V)Ai∈Tqi(V) for each ii, as expected. If A∈Sn(V)A∈Sn(V), then AkAk denotes the symmetric product A·A⋯AA·A⋯A where there are kk copies of AA. We are concerned with producing the best lower bounds for ‖Ak‖2‖Ak‖2, particularly when n=2n=2. In this case we are able to show that ‖Ak‖2‖Ak‖2 is a symmetric polynomial in the eigenvalues of a positive semi-definite Hermitian matrix, MAMA, that is closely related to AA. From this we are able to obtain many lower bounds for ‖Ak‖2‖Ak‖2. In particular, we are able to show that if ωω denotes 1/r1/r where rr is the rank of MAMA, and A≠0, then‖Ak‖2⩾r(r+2)(r+4)⋯(r+2(k-1))rk(2k-1)(2k-3)⋯3·1‖A‖2k=∏t=0k-1(1+2ωt)(1+2t)‖A‖2kfor all integers k⩾1k⩾1, with equality in case k⩾2k⩾2 if and only if MAMA is a non-negative multiple of a Hermitian idempotent. A similar, but independent inequality is that ‖Ak‖2⩾λ1k+λ2k+⋯+λmk, where λ1,λ2,…,λmλ1,λ2,…,λm are the eigenvalues of MAMA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 1, 1 January 2010, Pages 116–133
نویسندگان
,