کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601723 1336901 2010 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The structure of max–min hyperplanes
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The structure of max–min hyperplanes
چکیده انگلیسی

In this article, continuing [12,13], further contributions to the theory of max–min convex geometry are given. The max–min semiring is the set R‾=R∪{±∞} endowed with the operations ⊕=max,⊗=min⊕=max,⊗=min in R‾. A max–min hyperplane (briefly, a hyperplane) is the set of all points x=(x1,…,xn)∈R‾n satisfying an equation of the forma1⊗x1⊕…⊕an⊗xn⊕an+1=b1⊗x1⊕…⊕bn⊗xn⊕bn+1,a1⊗x1⊕…⊕an⊗xn⊕an+1=b1⊗x1⊕…⊕bn⊗xn⊕bn+1,with ai,bi∈R‾(i=1,…n+1), where each side contains at least one term, and where ai≠biai≠bi for at least one index ii. The main result is a description of a hyperplane in terms of simple polyhedral blocks. As an application, one shows that the separation of max–min closed convex sets by max–min hyperplanes is not possible in general.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 1, 1 January 2010, Pages 402–429
نویسندگان
,