کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601763 1336903 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On pairs of commuting derivations of the polynomial ring in one or two variables
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On pairs of commuting derivations of the polynomial ring in one or two variables
چکیده انگلیسی

It is well known that each pair of commuting linear operators on a finite dimensional vector space over an algebraically closed field has a common eigenvector. We prove an analogous statement for derivations of k[x]k[x] and k[x,y]k[x,y] over any field k   of zero characteristic. In particular, if D1D1 and D2D2 are commuting derivations of k[x,y]k[x,y] and they are linearly independent over k  , then either (i) they have a common polynomial eigenfunction; i.e., a nonconstant polynomial f∈k[x,y]f∈k[x,y] such that D1(f)=λfD1(f)=λf and D2(f)=μfD2(f)=μf for some λ,μ∈k[x,y]λ,μ∈k[x,y], or (ii) they are Jacobian derivationsDu(g):=∂u∂x∂u∂y∂g∂x∂g∂y,Dv(g):=∂v∂x∂v∂y∂g∂x∂g∂yforallg∈k[x,y]defined by some u,v∈k[x,y]u,v∈k[x,y] for which Du(v)Du(v) is a nonzero constant.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 3, 1 September 2010, Pages 574–579
نویسندگان
,