کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601765 1336903 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A note on universally optimal matrices and field independence of the minimum rank of a graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A note on universally optimal matrices and field independence of the minimum rank of a graph
چکیده انگلیسی

For a simple graph G on n vertices, the minimum rank of G over a field F, written as mrF(G), is defined to be the smallest possible rank among all n×n symmetric matrices over F whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. A symmetric integer matrix A such that every off-diagonal entry is 0, 1, or -1 is called a universally optimal matrix if, for all fields F, the rank of A over F is the minimum rank of the graph of A over F. Recently, Dealba et al. [L.M. Dealba, J. Grout, L. Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electron. J. Linear Algebra 18 (2009) 403–419] initiated the study of universally optimal matrices and established field independence or dependence of minimum rank for some families of graphs. In the present paper, more results on universally optimal matrices and field independence or dependence of the minimum rank of a graph are presented, and some results of Dealba et al. [5] are improved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 3, 1 September 2010, Pages 585-594