کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601767 | 1336903 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A matrix completion problem over integral domains: the case with 2n-3 prescribed entries
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let Λ={λ1,…,λn}, n⩾2, be a given multiset of elements in an integral domain R and let P be a matrix of order n with at most 2n-3 prescribed entries that belong to R. Under the assumption that each row, each column and the diagonal of P have at least one unprescribed entry, we prove that P can be completed over R to obtain a matrix A with spectrum Λ. We describe an algorithm to construct A. This result is an extension to integral domains of a classical completion result by Herskowitz for fields.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 3, 1 September 2010, Pages 606-617
Journal: Linear Algebra and its Applications - Volume 433, Issue 3, 1 September 2010, Pages 606-617