کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601794 | 1336904 | 2010 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cauchy-type determinants and integrable systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that the Sylvester matrix equation AX + XB = C has a unique solution X if and only if 0 ∉ spec(A) + spec(B). The main result of the present article are explicit formulas for the determinant of X in the case that C is one-dimensional. For diagonal matrices A, B, we reobtain a classical result by Cauchy as a special case.The formulas we obtain are a cornerstone in the asymptotic classification of multiple pole solutions to integrable systems like the sine-Gordon equation and the Toda lattice. We will provide a concise introduction to the background from soliton theory, an operator theoretic approach originating from work of Marchenko and Carl, and discuss examples for the application of the main results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 2, 1 August 2010, Pages 447-475
Journal: Linear Algebra and its Applications - Volume 433, Issue 2, 1 August 2010, Pages 447-475