کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601865 1631160 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The extended Krylov subspace method and orthogonal Laurent polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The extended Krylov subspace method and orthogonal Laurent polynomials
چکیده انگلیسی

The need to evaluate expressions of the form f(A)v, where A is a large sparse or structured symmetric matrix, v is a vector, and f is a nonlinear function, arises in many applications. The extended Krylov subspace method can be an attractive scheme for computing approximations of such expressions. This method projects the approximation problem onto an extended Krylov subspace Kℓ,m(A)=span{A-ℓ+1v,…,A-1v,v,Av,…,Am-1v} of fairly small dimension, and then solves the small approximation problem so obtained. We review available results for the extended Krylov subspace method and relate them to properties of Laurent polynomials. The structure of the projected problem receives particular attention. We are concerned with the situations when m=ℓ and m=2ℓ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 431, Issues 3–4, 15 July 2009, Pages 441-458