کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601930 1336910 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detecting rigid convexity of bivariate polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Detecting rigid convexity of bivariate polynomials
چکیده انگلیسی

Given a polynomial x∈Rn↦p(x) in n=2 variables, a symbolic-numerical algorithm is first described for detecting whether the connected component of the plane sublevel set P={x:p(x)⩾0} containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimization problem that can be solved with eigenvalue decomposition. When the variety C={x:p(x)=0} is an algebraic curve of genus zero, a second algorithm based on Bézoutians is proposed to detect whether P has an LMI representation and to build such a representation from a rational parametrization of C. Finally, some extensions to positive genus curves and to the case n>2 are mentioned.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 5, 15 February 2010, Pages 1218-1233