کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601934 1336910 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariants of matrix pairs over discrete valuation rings and Littlewood–Richardson fillings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Invariants of matrix pairs over discrete valuation rings and Littlewood–Richardson fillings
چکیده انگلیسی

Let M and N be two r×r matrices of full rank over a discrete valuation ring R with residue field of characteristic zero. Let P,Q and T be invertible r×r matrices over R. It is shown that the orbit of the pair (M,N) under the action (M,N)↦(PMQ-1,QNT-1) possesses a discrete invariant in the form of Littlewood–Richardson fillings of the skew shape λ/μ with content ν, where μ is the partition of orders of invariant factors of M, ν is the partition associated to N, and λ the partition of the product MN. That is, we may interpret Littlewood–Richardson fillings as a natural invariant of matrix pairs. This result generalizes invariant factors of a single matrix under equivalence, and is a converse of the construction in Appleby (1999) [1], where Littlewood–Richardson fillings were used to construct matrices with prescribed invariants. We also construct an example, however, of two matrix pairs that are not equivalent but still have the same Littlewood–Richardson filling. The filling associated to an orbit is determined by special quotients of determinants of a matrix in the orbit of the pair.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 5, 15 February 2010, Pages 1277-1298