کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601980 1336912 2010 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the normalized Laplacian energy and general Randić index R-1 of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the normalized Laplacian energy and general Randić index R-1 of graphs
چکیده انگلیسی

In this paper, we consider the energy of a simple graph with respect to its normalized Laplacian eigenvalues, which we call the L-energy. Over graphs of order n that contain no isolated vertices, we characterize the graphs with minimal L-energy of 2 and maximal L-energy of 2⌊n/2⌋. We provide upper and lower bounds for L-energy based on its general Randić index R-1(G). We highlight known results for R-1(G), most of which assume G is a tree. We extend an upper bound of R-1(G) known for trees to connected graphs. We provide bounds on the L-energy in terms of other parameters, one of which is the energy with respect to the adjacency matrix. Finally, we discuss the maximum change of L-energy and R-1(G) upon edge deletion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 1, 15 July 2010, Pages 172-190