کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601987 1336912 2010 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Equalities and inequalities for inertias of hermitian matrices with applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Equalities and inequalities for inertias of hermitian matrices with applications
چکیده انگلیسی

The inertia of a Hermitian matrix is defined to be a triplet composed of the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we show some basic formulas for inertias of 2×2 block Hermitian matrices. From these formulas, we derive various equalities and inequalities for inertias of sums, parallel sums, products of Hermitian matrices, submatrices in block Hermitian matrices, differences of outer inverses of Hermitian matrices. As applications, we derive the extremal inertias of the linear matrix expression A-BXB∗ with respect to a variable Hermitian matrix X. In addition, we give some results on the extremal inertias of Hermitian solutions to the matrix equation AX=B, as well as the extremal inertias of a partial block Hermitian matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issue 1, 15 July 2010, Pages 263-296