کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602068 1631158 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic results on the spectral radius and the diameter of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Asymptotic results on the spectral radius and the diameter of graphs
چکیده انگلیسی

We study graphs with spectral radius at most and refine results by Woo and Neumaier [R. Woo, A. Neumaier, On graphs whose spectral radius is bounded by , Graphs Combinatorics 23 (2007) 713–726]. We study the limit points of the spectral radii of certain families of graphs, and apply the results to the problem of minimizing the spectral radius among the graphs with a given number of vertices and diameter. In particular, we consider the cases when the diameter is about half the number of vertices, and when the diameter is near the number of vertices. We prove certain instances of a conjecture posed by Van Dam and Kooij [E. R. Van Dam, R. E. Kooij, The minimal spectral radius of graphs with a given diameter, Linear Algebra Appl. 423 (2007) 408–419] and show that the conjecture is false for the other instances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issues 2–3, 15 January 2010, Pages 722-737