کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602151 1336917 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The eigenvalue distribution of products of Toeplitz matrices – Clustering and attraction
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The eigenvalue distribution of products of Toeplitz matrices – Clustering and attraction
چکیده انگلیسی

We use a recent result concerning the eigenvalues of a generic (non-Hermitian) complex perturbation of a bounded Hermitian sequence of matrices to prove that the asymptotic spectrum of the product of Toeplitz sequences, whose symbols have a real-valued essentially bounded product h, is described by the function h in the “Szegö way”. Then, using Mergelyan’s theorem, we extend the result to the more general case where h belongs to the Tilli class. The same technique gives us the analogous result for sequences belonging to the algebra generated by Toeplitz sequences, if the symbols associated with the sequences are bounded and the global symbol h belongs to the Tilli class. A generalization to the case of multilevel matrix-valued symbols and a study of the case of Laurent polynomials not necessarily belonging to the Tilli class are also given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 10, 1 May 2010, Pages 2658-2678