کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602163 1336918 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trilinear products and comtrans algebra representations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Trilinear products and comtrans algebra representations
چکیده انگلیسی

Comtrans algebras are modules over a commutative ring R equipped with two trilinear operations: a left alternative commutator and a translator satisfying the Jacobi identity, the commutator and translator being connected by the so-called comtrans identity. The standard construction of a comtrans algebra uses the ternary commutator and translator of a trilinear product. If 6 is invertible in R, then each comtrans algebra arises in this standard way from the so-called bogus product.Consider a vector space E of dimension n over a field R. While the dimension of the space of all trilinear products on E is n4, the dimension of the space of all comtrans algebras on E is less, namely . The paper determines which trilinear products may be represented as linear combinations of the commutator and translator of a comtrans algebra. For R not of characteristic 3, the necessary and sufficient condition for such a representation is the strong alternativity xxy+xyx+yxx=0 of the trilinear product xyz. For R also not of characteristic 2, it is shown that the representation may be given by the bogus product. A suitable representation for the characteristic 2 case is also obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issue 1, 1 January 2009, Pages 17-26