کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602167 1336918 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper and lower bounds on norms of functions of matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Upper and lower bounds on norms of functions of matrices
چکیده انگلیسی

Given an n by n matrix A, we look for a set S in the complex plane and positive scalars m and M such that for all functions p bounded and analytic on S and throughout a neighborhood of each eigenvalue of A, the inequalitiesm·inf{‖f‖L∞(S):f(A)=p(A)}⩽‖p(A)‖⩽M·inf{‖f‖L∞(S):f(A)=p(A)}m·inf{‖f‖L∞(S):f(A)=p(A)}⩽‖p(A)‖⩽M·inf{‖f‖L∞(S):f(A)=p(A)}hold. We show that for 2 by 2 matrices, if S   is the field of values, then one can take m=1m=1 and M=2M=2. We show that for a perturbed Jordan block – a matrix A that is an n by n   Jordan block with eigenvalue 0 except that its (n,1)(n,1)-entry is νν, with |ν|∈(0,1)|ν|∈(0,1) – if S   is the unit disk, then m=M=1m=M=1. We argue, however, that, in general, due to the behavior of minimal-norm interpolating functions, it may be very difficult or impossible to find such a set S   for which the ratio M/mM/m is of moderate size.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issue 1, 1 January 2009, Pages 52–65
نویسندگان
,