کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602239 1631168 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Coefficient assignability and a block decomposition for systems over rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Coefficient assignability and a block decomposition for systems over rings
چکیده انگلیسی

We characterize the class of commutative rings R such that, for any linear system (A,B) with coefficients in R, one can extract the reachable part of the system, in a way similar to the classical Kalman controllability decomposition for systems over fields. The notion of strong CA ring is introduced as the class of commutative rings over which any system verifies a strong form of the coefficient assignability property. It is shown that the class of strong CA rings lies strictly between the classes of rings with strong versions of the known pole assignability (PA) and feedback cyclization (FC) properties, defined only for reachable systems. We prove that for UCU rings, for example polynomials with coefficients in a field, the usual PA, CA and FC properties are equivalent to the corresponding strong forms of these properties, in particular C[y] is a strong CA ring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 429, Issues 5–6, 1 September 2008, Pages 1277-1287