کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602260 1336920 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Double piling structure of matrix monotone functions and of matrix convex functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Double piling structure of matrix monotone functions and of matrix convex functions
چکیده انگلیسی

There are basic equivalent assertions known for operator monotone functions and operator convex functions in two papers by Hansen and Pedersen. In this note we consider their results as correlation problem between two sequences of matrix nn-monotone functions and matrix nn-convex functions, and we focus the following three assertions at each label nn among them:(i)f(0)⩽0f(0)⩽0 and ff is nn-convex in [0,α)[0,α),(ii)For each matrix aa with its spectrum in [0,α)[0,α) and a contraction cc in the matrix algebra MnMn,f(cac)⩽cf(a)c,f(cac)⩽cf(a)c,(iii)The function f(t)/t(=g(t)) is nn-monotone in (0,α)(0,α).We show that for any n∈Nn∈N two conditions (ii) and (iii) are equivalent. The assertion that ff is nn-convex with f(0)⩽0f(0)⩽0 implies that g(t)g(t) is (n-1)(n-1)-monotone holds. The implication from (iii) to (i) does not hold even for n=1n=1. We also show in a limited case that the condition (i) implies (ii).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 431, Issue 10, 15 October 2009, Pages 1825–1832
نویسندگان
, ,