کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602303 | 1336922 | 2010 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A numerical exploration of compressed sampling recovery
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper explores numerically the efficiency of ℓ1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to recover by ℓ1 minimization. The supports of these pathological vectors are also used to select sub-matrices that are ill-conditioned. This allows us to challenge theoretical identifiability criteria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 7, 15 March 2010, Pages 1663-1679
Journal: Linear Algebra and its Applications - Volume 432, Issue 7, 15 March 2010, Pages 1663-1679