کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602378 1631170 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Fiedler- and Parter-vertices of acyclic matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On Fiedler- and Parter-vertices of acyclic matrices
چکیده انگلیسی

Let A be a real symmetric matrix and let λ be a real number. The algebraic multiplicity of λ as an eigenvalue of A is denoted by mA(λ), and the principal submatrix of A obtained by deleting row and column i from A is denoted by A(i). If mA(i)(λ)⩾mA(λ) (resp. mA(i)(λ)>mA(λ)), then index i is said to be a Fiedler-vertex (resp. a Parter-vertex) of A for λ. In this paper we provide geometric characterizations of Fiedler- and Parter-vertices of acyclic matrices, and give a geometric proof for the Parter–Wiener theorem in [C.R. Johnson, A. Leal Duarte, C.M. Saiago, The Parter–Wiener theorem: refinement and generalization, SIAM J. Matrix Anal. Appl. 25 (2003) 352–361]. Furthermore, we describe a structure of an acyclic matrix in terms of Fiedler- and Parter-vertices which enables us to construct an acyclic matrix of a desired form according to the locations of Fiedler- and Parter-vertices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 428, Issues 11–12, 1 June 2008, Pages 2601-2613