کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602414 1336925 2010 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Jordan structures of alternating matrix polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Jordan structures of alternating matrix polynomials
چکیده انگلیسی

Alternating matrix polynomials, that is, polynomials whose coefficients alternate between symmetric and skew-symmetric matrices, generalize the notions of even and odd scalar polynomials. We investigate the Smith forms of alternating matrix polynomials, showing that each invariant factor is an even or odd scalar polynomial. Necessary and sufficient conditions are derived for a given Smith form to be that of an alternating matrix polynomial. These conditions allow a characterization of the possible Jordan structures of alternating matrix polynomials, and also lead to necessary and sufficient conditions for the existence of structure-preserving strong linearizations. Most of the results are applicable to singular as well as regular matrix polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 432, Issue 4, 1 February 2010, Pages 867-891