کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602650 1631162 2009 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Riemannian metrics on positive definite matrices related to means
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Riemannian metrics on positive definite matrices related to means
چکیده انگلیسی

The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function ϕ in the form when ∑iλiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D↦G(D) is a kernel metric as well. Several Riemannian geometries of the literature are particular cases, for example, the statistical metric for multivariate Gaussian distributions and the quantum Fisher information. In the paper the case ϕ(x,y)=M(x,y)θ is mostly studied when M(x,y) is a mean of the positive numbers x and y. There are results about the geodesic curves and geodesic distances. The geometric mean, the logarithmic mean and the root mean are important cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 11–12, 1 June 2009, Pages 3105-3130