کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602714 | 1336935 | 2009 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In max algebra it is well known that the sequence of max algebraic powers Ak, with A an irreducible square matrix, becomes periodic after a finite transient time T(A), and the ultimate period γ is equal to the cyclicity of the critical graph of A.In this connection, we study computational complexity of the following problems: (1) for a given k, compute a periodic power Ar with and r⩾T(A), (2) for a given x, find the ultimate period of {Al⊗x}. We show that both problems can be solved by matrix squaring in O(n3logn) operations. The main idea is to apply an appropriate diagonal similarity scaling A↦X-1AX, called visualization scaling, and to study the role of cyclic classes of the critical graph.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 431, Issue 8, 1 September 2009, Pages 1325-1339
Journal: Linear Algebra and its Applications - Volume 431, Issue 8, 1 September 2009, Pages 1325-1339