کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602714 1336935 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes
چکیده انگلیسی

In max algebra it is well known that the sequence of max algebraic powers Ak, with A an irreducible square matrix, becomes periodic after a finite transient time T(A), and the ultimate period γ is equal to the cyclicity of the critical graph of A.In this connection, we study computational complexity of the following problems: (1) for a given k, compute a periodic power Ar with and r⩾T(A), (2) for a given x, find the ultimate period of {Al⊗x}. We show that both problems can be solved by matrix squaring in O(n3logn) operations. The main idea is to apply an appropriate diagonal similarity scaling A↦X-1AX, called visualization scaling, and to study the role of cyclic classes of the critical graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 431, Issue 8, 1 September 2009, Pages 1325-1339