کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602746 | 1336936 | 2008 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The spectral characterization of graphs of index less than 2 with no path as a component
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A graph is said to be determined by the adjacency and Laplacian spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency and Laplacian spectrum, respectively. It is known that connected graphs of index less than 2 are determined by their adjacency spectrum. In this paper, we focus on the problem of characterization of DS graphs of index less than 2. First, we give various infinite families of cospectral graphs with respect to the adjacency matrix. Subsequently, the results will be used to characterize all DS graphs (with respect to the adjacency matrix) of index less than 2 with no path as a component. Moreover, we show that most of these graphs are DS with respect to the Laplacian matrix.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 428, Issue 7, 1 April 2008, Pages 1696-1705
Journal: Linear Algebra and its Applications - Volume 428, Issue 7, 1 April 2008, Pages 1696-1705