کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602769 | 1336937 | 2008 | 10 صفحه PDF | دانلود رایگان |

The inertia of a graph is an integer triple specifying the number of negative, zero, and positive eigenvalues of the adjacency matrix of the graph. A unicyclic graph is a simple connected graph with an equal number of vertices and edges. This paper characterizes the inertia of a unicyclic graph in terms of maximum matchings and gives a linear-time algorithm for computing it. Chemists are interested in whether the molecular graph of an unsaturated hydrocarbon is (properly) closed-shell, having exactly half of its eigenvalues greater than zero, because this designates a stable electron configuration. The inertia determines whether a graph is closed-shell, and hence the reported result gives a linear-time algorithm for determining this for unicyclic graphs.
Journal: Linear Algebra and its Applications - Volume 429, Issue 4, 1 August 2008, Pages 849-858