کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602773 1336937 2008 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semidefinite descriptions of low-dimensional separable matrix cones
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Semidefinite descriptions of low-dimensional separable matrix cones
چکیده انگلیسی

Let K⊂E, K′⊂E′ be convex cones residing in finite-dimensional real vector spaces. An element y in the tensor product E⊗E′ is K⊗K′-separable if it can be represented as finite sum , where xl∈K and for all l. Let S(n), H(n), Q(n) be the spaces of n×n real symmetric, complex Hermitian and quaternionic Hermitian matrices, respectively. Let further S+(n), H+(n), Q+(n) be the cones of positive semidefinite matrices in these spaces. If a matrix A∈H(mn)=H(m)⊗H(n) is H+(m)⊗H+(n)-separable, then it fulfills also the so-called PPT condition, i.e. it is positive semidefinite and has a positive semidefinite partial transpose. The same implication holds for matrices in the spaces S(m)⊗S(n), H(m)⊗S(n), and for m⩽2 in the space Q(m)⊗S(n). We provide a complete enumeration of all pairs (n,m) when the inverse implication is also true for each of the above spaces, i.e. the PPT condition is sufficient for separability. We also show that a matrix in Q(n)⊗S(2) is Q+(n)⊗S+(2)- separable if and only if it is positive semidefinite.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 429, Issue 4, 1 August 2008, Pages 901-932