کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602805 | 1631182 | 2006 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let R be a commutative principal ideal domain (PID) with char (R) ≠ 2, n ⩾ 2. Denote by Sn(R) the set of all n × n symmetric matrices over R. If ϕ is a Jordan automorphism on Sn(R), then ϕ is an additive rank preserving bijective map. In this paper, every additive rank preserving bijection on Sn(R) is characterized, thus ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is of the form ϕ(X) = αtPXσP where α ∈ R∗, P ∈ GLn(R) which satisfies tPP = α−1I, and σ is an automorphism of R. It follows that every Jordan automorphism on Sn(R) may be extended to a ring automorphism on Mn(R), and ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is an additive rank preserving bijection on Sn(R) which satisfies ϕ(I) = I.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 419, Issues 2–3, 1 December 2006, Pages 311-325
Journal: Linear Algebra and its Applications - Volume 419, Issues 2–3, 1 December 2006, Pages 311-325