| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4602805 | 1631182 | 2006 | 15 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID 
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Let R be a commutative principal ideal domain (PID) with char (R) ≠ 2, n ⩾ 2. Denote by Sn(R) the set of all n × n symmetric matrices over R. If ϕ is a Jordan automorphism on Sn(R), then ϕ is an additive rank preserving bijective map. In this paper, every additive rank preserving bijection on Sn(R) is characterized, thus ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is of the form ϕ(X) = αtPXσP where α ∈ R∗, P ∈ GLn(R) which satisfies tPP = α−1I, and σ is an automorphism of R. It follows that every Jordan automorphism on Sn(R) may be extended to a ring automorphism on Mn(R), and ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is an additive rank preserving bijection on Sn(R) which satisfies ϕ(I) = I.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 419, Issues 2–3, 1 December 2006, Pages 311-325
											Journal: Linear Algebra and its Applications - Volume 419, Issues 2–3, 1 December 2006, Pages 311-325