کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602805 1631182 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID
چکیده انگلیسی

Let R be a commutative principal ideal domain (PID) with char (R) ≠ 2, n ⩾ 2. Denote by Sn(R) the set of all n × n symmetric matrices over R. If ϕ is a Jordan automorphism on Sn(R), then ϕ is an additive rank preserving bijective map. In this paper, every additive rank preserving bijection on Sn(R) is characterized, thus ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is of the form ϕ(X) = αtPXσP where α ∈ R∗, P ∈ GLn(R) which satisfies tPP = α−1I, and σ is an automorphism of R. It follows that every Jordan automorphism on Sn(R) may be extended to a ring automorphism on Mn(R), and ϕ is a Jordan automorphism on Sn(R) if and only if ϕ is an additive rank preserving bijection on Sn(R) which satisfies ϕ(I) = I.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 419, Issues 2–3, 1 December 2006, Pages 311-325