کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602846 1631165 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the optimal complex extrapolation of the complex Cayley transform
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the optimal complex extrapolation of the complex Cayley transform
چکیده انگلیسی

The Cayley transform, F≔F(A)=(I+A)-1(I-A), with A∈Cn,n and -1∉σ(A), where σ(·) denotes spectrum, and its extrapolated counterpart F(ωA), ω∈C⧹{0} and -1∉σ(ωA), are of significant theoretical and practical importance (see, e.g. [A. Hadjidimos, M. Tzoumas, On the principle of extrapolation and the Cayley transform, Linear Algebra Appl., in press]). In this work, we extend the theory in [8] to cover the complex case. Specifically, we determine the optimal extrapolation parameter ω∈C⧹{0} for which the spectral radius of the extrapolated Cayley transform ρ(F(ωA)) is minimized assuming that σ(A)⊂H, where H is the smallest closed convex polygon, and satisfies O(0)∉H. As an application, we show how a complex linear system, with coefficient a certain class of indefinite matrices, which the ADI-type method of Hermitian/Skew-Hermitian splitting fails to solve, can be solved in a “best” way by the aforementioned method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 2–3, 15 January 2009, Pages 619-632