کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602848 | 1631165 | 2009 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An application of lattice basis reduction to polynomial identities for algebraic structures
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The authors’ recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q∈Q∪{∞}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of Et, obtain a basis of the nullspace lattice from the last rows of a matrix U for which UEt = H, and then use the LLL algorithm to reduce the basis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 2–3, 15 January 2009, Pages 642-659
Journal: Linear Algebra and its Applications - Volume 430, Issues 2–3, 15 January 2009, Pages 642-659