کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602848 1631165 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An application of lattice basis reduction to polynomial identities for algebraic structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An application of lattice basis reduction to polynomial identities for algebraic structures
چکیده انگلیسی

The authors’ recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q∈Q∪{∞}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of Et, obtain a basis of the nullspace lattice from the last rows of a matrix U for which UEt = H, and then use the LLL algorithm to reduce the basis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 2–3, 15 January 2009, Pages 642-659