کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602866 1631165 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral theory of Sturm–Liouville difference operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Spectral theory of Sturm–Liouville difference operators
چکیده انگلیسی

We present several classes of explicit self-adjoint Sturm–Liouville difference operators with either a non-Hermitian leading coefficient function, or a non-Hermitian potential function, or a non-definite weight function, or a non-self-adjoint boundary condition. These examples are obtained using a general procedure for constructing difference operators realizing discrete Sturm–Liouville problems, and the minimum conditions for such difference operators to be self-adjoint with respect to a natural quadratic form. It is shown that a discrete Sturm–Liouville problem admits a difference operator realization if and only if it does not have all complex numbers as eigenvalues. Spectral properties of self-adjoint Sturm–Liouville difference operators are studied. In particular, several eigenvalue comparison results are proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 2–3, 15 January 2009, Pages 830-846