کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602877 1631178 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectrally arbitrary patterns: Reducibility and the 2n conjecture for n = 5
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Spectrally arbitrary patterns: Reducibility and the 2n conjecture for n = 5
چکیده انگلیسی

A sign pattern Z (a matrix whose entries are elements of {+, −, 0}) is spectrally arbitrary if for any self-conjugate spectrum there is a real matrix with sign pattern Z having the given spectrum. Spectrally arbitrary sign patterns were introduced in [J.H. Drew, C.R. Johnson, D.D. Olesky, P. van den Driessche, Spectrally arbitrary patterns, Linear Algebra Appl. 308 (2000) 121–137], where it was (incorrectly) stated that if a sign pattern Z is reducible and each of its irreducible components is a spectrally arbitrary sign pattern, then Z is a spectrally arbitrary sign pattern, and it was conjectured that the converse is true as well; we present counterexamples to both of these statements. In [T. Britz, J.J. McDonald, D.D. Olesky, P. van den Driessche, Minimal spectrally arbitrary patterns, SIAM J. Matrix Anal. Appl. 26 (2004) 257–271] it was conjectured that any n ×n spectrally arbitrary sign pattern must have at least 2n nonzero entries; we establish that this conjecture is true for 5 × 5 sign patterns. We also establish analogous results for nonzero patterns.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 423, Issues 2–3, 1 June 2007, Pages 262-276