کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602918 | 1336942 | 2008 | 12 صفحه PDF | دانلود رایگان |

Recently, Lee et al. [Young-ju Lee, Jinbiao Wu, Jinchao Xu, Ludmil Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM J. Matrix Anal. Appl. 28 (2006) 634–641] introduce new criteria for the semi-convergence of general iterative methods for semidefinite linear systems based on matrix splitting. The new conditions generalize the classical notion of P-regularity introduced by Keller [H.B. Keller, On the solution of singular and semidefinite linear systems by iterations, SIAM J. Numer. Anal. 2 (1965) 281–290]. In view of their results, we consider here stipulations on a splitting A=M-N, which lead to fixed point systems such that, the iterative scheme converges to a weighted Moore–Penrose solution to the system Ax=b. Our results extend the result of Lee et al. to a more general case and we also show that it requires less restrictions on the splittings than Keller’s P-regularity condition to ensure the convergence of iterative scheme.
Journal: Linear Algebra and its Applications - Volume 429, Issue 10, 1 November 2008, Pages 2555-2566