کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4602970 | 1631185 | 2006 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterated linear maps on a cone and Denjoy–Wolff theorems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let C be a closed cone with nonempty interior int(C) in a finite dimensional Banach space X. We consider linear maps f : X → X such that f(int(C)) ⊂ int(C) and f has no eigenvector in int(C). For q ∈ C∗, with q(x) > 0 ∀x ∈ C⧹{0} we define and Σq = {x ∈ C∣q(x) = 1}. Let ri(Σq) denote the relative interior of Σq. We are interested in the omega limit set ω(x; T) of x ∈ ri(Σq) under T. We prove that the convex hull co(ω(x; T)) ⊂ ∂Σq, and if C is polyhedral we also show that ω(x; T) is finite. Thus if C is polyhedral there is a face of C such that the orbit of any point in the interior of C under iterates of f approaches that face after scaling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 416, Issues 2–3, 15 July 2006, Pages 615-626
Journal: Linear Algebra and its Applications - Volume 416, Issues 2–3, 15 July 2006, Pages 615-626