کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4602975 1631185 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic spectral properties of totally symmetric multilevel Toeplitz matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Asymptotic spectral properties of totally symmetric multilevel Toeplitz matrices
چکیده انگلیسی

Let n = (n1 , … , nk) be a multiindex and . We say that n → ∞ if ni → ∞, 1 ⩽ i ⩽ k. If r = (r1, … , rk) and s = (s1, … , sk), let ∣r − s∣ = (∣r1 − s1∣, … , ∣s1 − sk∣). We say that a multilevel Toeplitz matrix of the form is totally symmetric. Let Qk be the k-fold Cartesian product of Q = [−π, π] with itself, and let be the Fourier coefficients of a function f = f(θ1, … , θk) in L2(Qk) that is even in each variable θ1, … , θk, so that Tn is totally symmetric for every n. We associate the multiindex n with 2k multiindices m(n, p), 0 ⩽ p ⩽ 2k − 1, such that limn→∞κ(m (n, p))/κ(n) = 2−k, 0 ⩽ p ⩽ 2k − 1, and , and show that the singular values of Tn separate naturally into 2k sets with cardinalities κ(m(n, 0)), … , κ(m(n, 2k − 1)) such that the singular values in each set are associated with singular vectors exhibiting a particular type of symmetry. Our main result is that the singular values in and the singular values of Tm(n, p) are absolutely equally distributed with respect to the class G of functions bounded and uniformly continuous on R as n → ∞, 0 ⩽ p ⩽ 2k − 1. If f is real-valued, then an analogous result holds for the eigenvalues and eigenvectors of Tn.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 416, Issues 2–3, 15 July 2006, Pages 696-709