کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603011 1631164 2009 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations
چکیده انگلیسی

In this paper, we propose structured doubling algorithms for the computation of the weakly stabilizing Hermitian solutions of the continuous- and discrete-time algebraic Riccati equations, respectively. Assume that the partial multiplicities of purely imaginary and unimodular eigenvalues (if any) of the associated Hamiltonian and symplectic pencil, respectively, are all even and the C/DARE and the dual C/DARE have weakly stabilizing Hermitian solutions with property (P). Under these assumptions, we prove that if these structured doubling algorithms do not break down, then they converge to the desired Hermitian solutions globally and linearly. Numerical experiments show that the structured doubling algorithms perform efficiently and reliably.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 5–6, 1 March 2009, Pages 1452-1478