کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603013 1631164 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zero product determined matrix algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Zero product determined matrix algebras
چکیده انگلیسی

Let A be an algebra over a commutative unital ring C. We say that A is zero product determined if for every C-module X and every bilinear map {·,·}:A×A→X the following holds: if whenever xy=0, then there exists a linear operator T such that for all x,y∈A. If we replace in this definition the ordinary product by the Lie (resp. Jordan) product, then we say that A is zero Lie (resp. Jordan) product determined. We show that the matrix algebra Mn(B), n⩾2, where B is any unital algebra, is always zero product determined, and under some technical restrictions it is also zero Jordan product determined. The bulk of the paper is devoted to the problem whether Mn(B) is zero Lie product determined. We show that this does not hold true for all unital algebras B. However, if B is zero Lie product determined, then so is Mn(B).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issues 5–6, 1 March 2009, Pages 1486-1498