کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603040 1631183 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rational realization of maximum eigenvalue multiplicity of symmetric tree sign patterns
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rational realization of maximum eigenvalue multiplicity of symmetric tree sign patterns
چکیده انگلیسی

A sign pattern is a matrix whose entries are elements of {+, −, 0}; it describes the set of real matrices whose entries have the signs in the pattern. A graph (that allows loops but not multiple edges) describes the set of symmetric matrices having a zero-nonzero pattern of entries determined by the absence or presence of edges in the graph. DeAlba et al. [L.M. DeAlba, T.L. Hardy, I.R. Hentzel, L. Hogben, A. Wangsness, Minimum rank and maximum eigenvalue multiplicity of symmetric tree sign patterns, Linear Algebra Appl., in press, doi:10.1016/j.laa.2006.02.018.] gave algorithms for the computation of maximum multiplicity and minimum rank of matrices associated with a tree sign pattern or tree, and an algorithm to obtain an integer matrix realizing minimum rank. We extend these results by giving algorithms to obtain a symmetric rational matrix realizing the maximum multiplicity of a rational eigenvalue among symmetric matrices associated with a symmetric tree sign pattern or tree.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 418, Issues 2–3, 15 October 2006, Pages 380-393