کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603063 1631183 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper bounds on algebraic connectivity via convex optimization
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Upper bounds on algebraic connectivity via convex optimization
چکیده انگلیسی

The second smallest eigenvalue of the Laplacian matrix L of a graph is called its algebraic connectivity. We describe a method for obtaining an upper bound on the algebraic connectivity of a family of graphs G. Our method is to maximize the second smallest eigenvalue over the convex hull of the Laplacians of graphs in G, which is a convex optimization problem. By observing that it suffices to optimize over the subset of matrices invariant under the symmetry group of G, we can solve the optimization problem analytically for families of graphs with large enough symmetry groups. The same method can also be used to obtain upper bounds for other concave functions, and lower bounds for convex functions of L (such as the spectral radius).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 418, Issues 2–3, 15 October 2006, Pages 693-707