کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603116 1336948 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Singularities of rational functions and minimal factorizations: The noncommutative and the commutative setting
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Singularities of rational functions and minimal factorizations: The noncommutative and the commutative setting
چکیده انگلیسی

We show that the singularities of a matrix-valued noncommutative rational function which is regular at zero coincide with the singularities of the resolvent in its minimal state space realization. The proof uses a new notion of noncommutative backward shifts. As an application, we establish the commutative counterpart of the singularities theorem: the singularities of a matrix-valued commutative rational function which is regular at zero coincide with the singularities of the resolvent in any of its Fornasini–Marchesini realizations with the minimal possible state space dimension. The singularities results imply the absence of zero-pole cancellations in a minimal factorization, both in the noncommutative and in the commutative setting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 430, Issue 4, 1 February 2009, Pages 869-889