کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603187 | 1336949 | 2006 | 8 صفحه PDF | دانلود رایگان |

Let R be a local ring and M a free module of a finite rank over R. An element τ ∈ AutRM is said to be simple if τ ≠ 1 fixes a hyperplane of M.We shall show that for any σ ∈ AutRM there exist a basis X for M and ρ ∈ AutRM such that ρ acts as a permutation on X and ρ−1σ is a product of m or less than m simple elements in AutRM, where m is the order of the invariant factors of σ modulo the maximal ideal of R.Also we shall investigate the problem treated by E.W. Ellers and H. Ishibashi [Factorizations of transformations over a valuation ring, Linear Algebra Appl. 85 (1987) 17–27], in which they showed that σ is a product of simple elements and gave an upper bound of the smallest number of such factors of σ, whereas in the present paper we will give lower bounds of σ in case that R is a local domain. Moreover we will factorize θσ as a product of symmetries and transvections for some θ the matrix of which is diagonal.
Journal: Linear Algebra and its Applications - Volume 418, Issue 1, 1 October 2006, Pages 269-276