کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603189 1336949 2006 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Contractive maps on normed linear spaces and their applications to nonlinear matrix equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Contractive maps on normed linear spaces and their applications to nonlinear matrix equations
چکیده انگلیسی

In this paper we will give necessary and sufficient conditions under which a map is a contraction on a certain subset of a normed linear space. These conditions are already well known for maps on intervals in R. Using the conditions and Banach’s fixed point theorem we can prove a fixed point theorem for operators on a normed linear space. The fixed point theorem will be applied to the matrix equation X = In + A∗f(X)A, where f is a map on the set of positive definite matrices induced by a real valued map on (0, ∞). This will give conditions on A and f under which the equation has a unique solution in a certain set. We will consider two examples of f in detail. In one example the application of the fixed point theorem is the first step in proving that the equation has a unique positive definite solution under the conditions on A.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 418, Issue 1, 1 October 2006, Pages 292-311