کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603278 1631166 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On a Laplacian spectral characterization of graphs of index less than 2
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On a Laplacian spectral characterization of graphs of index less than 2
چکیده انگلیسی

A graph is said to be determined by the adjacency (respectively, Laplacian) spectrum if there is no other non-isomorphic graph with the same adjacency (respectively, Laplacian) spectrum. The maximum eigenvalue of A(G) is called the index of G. The connected graphs with index less than 2 are known, and each is determined by its adjacency spectrum. In this paper, we show that graphs of index less than 2 are determined by their Laplacian spectrum.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 429, Issues 11–12, 1 December 2008, Pages 2724-2731