کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603342 1631174 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The minimum rank of matrices and the equivalence class graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The minimum rank of matrices and the equivalence class graph
چکیده انگلیسی

For a given connected (undirected) graph G  , the minimum rank of G=(V(G),E(G))G=(V(G),E(G)) is defined to be the smallest possible rank over all hermitian matrices A   whose (i,j)(i,j)th entry is non-zero if and only if i≠ji≠j and {i,j}{i,j} is an edge in G   ({i,j}∈E(G){i,j}∈E(G)). For each vertex x in G   (x∈V(G)x∈V(G)), N(x)N(x) is the set of all neighbors of x. Let R   be the equivalence relation on V(G)V(G) such that∀x,y∈V(G)xRy⇔N(x)=N(y).Our aim is find classes of connected graphs G=(V(G),E(G))G=(V(G),E(G)), such that the minimum rank of G is equal to the number of equivalence classes for the relation R   on V(G)V(G).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 427, Issues 2–3, 1 December 2007, Pages 161–170
نویسندگان
, ,