کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603443 1336961 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenvalue inequalities for convex and log-convex functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Eigenvalue inequalities for convex and log-convex functions
چکیده انگلیسی

We give a matrix version of the scalar inequality f(a + b) ⩽ f(a) + f(b) for positive concave functions f on [0, ∞). We show that Choi’s inequality for positive unital maps and operator convex functions remains valid for monotone convex functions at the cost of unitary congruences. Some inequalities for log-convex functions are presented and a new arithmetic–geometric mean inequality for positive matrices is given. We also point out a simple proof of the Bhatia–Kittaneh arithmetic–geometric mean inequality.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 424, Issue 1, 1 July 2007, Pages 25-35