کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4603491 | 1336962 | 2008 | 15 صفحه PDF | دانلود رایگان |

A linear algebra proof is given of the fact that the nullspace of a finite-rank linear projector, on polynomials in two complex variables, is an ideal if and only if the projector is the bounded pointwise limit of Lagrange projectors, i.e., projectors whose nullspace is a radical ideal, i.e., the set of all polynomials that vanish on a certain given finite set. A characterization of such projectors is also given in the real case. More generally, a characterization is given of those finite-rank linear projectors, on polynomials in d complex variables, with nullspace an ideal that are the bounded pointwise limit of Lagrange projectors. The characterization is in terms of a certain sequence of d commuting linear maps and so focuses attention on the algebra generated by such sequences.
Journal: Linear Algebra and its Applications - Volume 429, Issue 1, 1 July 2008, Pages 311-325