کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4603524 1631179 2007 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient rank reduction of correlation matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Efficient rank reduction of correlation matrices
چکیده انگلیسی

Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably with the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 422, Issues 2–3, 15 April 2007, Pages 629-653